Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38204031

RESUMO

This study investigates the corrosion resistance of Type 316 stainless steel as a candidate material for radioactive waste disposal canisters. The viability of stainless steel is examined under groundwater conditions with variations in pH, bisulfide ions (HS-), and chloride ions (Cl-) concentrations. Utilizing response surface methodology, correlations between corrosion factors and two crucial response variables, passive film breakdown potential and protection potential, are established. Cyclic potentiodynamic polarization tests and advanced analytical techniques provide detailed insights into the material's behavior. This research goes beyond, deriving an equation through response surface methodology that elucidates the relationship between the factors and breakdown potential. HS- weakens the passive film and reduces the pitting corrosion resistance of the stainless steel. However, this study highlights the inhibitory effect of HS- on pitting corrosion when Cl- concentrations are below 0.001 M and at equivalent concentrations of HS-. Under these conditions, immediate re-passivation occurs from the destroyed passive film to metal sulfides such as FeS2, MoS2, and MoS3. As a result, no hysteresis loop occurs in the cyclic polarization curve in these conditions. This research contributes to the understanding of Type 316 stainless-steel corrosion behavior, offering implications for the disposal of radioactive waste in geological repositories.

2.
Environ Sci Pollut Res Int ; 29(28): 42055-42066, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34822083

RESUMO

Industrial sludges from wastewater treatment plants of industrial parks and a drinking water treatment plant in northern Vietnam were investigated in this study. The total concentrations of heavy metals (As, Cd, Cu, Cr, Ni, Hg, Pb, Zn) and other elements (Mn, Pd, Sb, V) in the sludges were measured using the ICP-MS method. In addition, the surface characteristics of the samples were analyzed using SEM-EDS and FTIR techniques. According to Vietnam's current waste management regulation, the investigated industrial sludges belonged to the hazardous waste category (with Pb concentration > 300 µg/g). In contrast, the sludge from the drinking water treatment plant had a low content of heavy metals and toxic elements. The sequential extraction method revealed that the heavy metals in the industrial sludges exhibited higher mobilization forms (exchangeable and reduceable fractions) than those in the drinking water sludges. The mobilization ability of heavy metals is probably related to the surface function groups of the sludges, which were dominated by (-COOH) and (-OH) groups. The potential ecological risk assessment calculations indicated that the industrial sludges had high potential risk (with the RI values ranging from 229.7 to 605.4), mainly due to the content of Cd in the sludge samples. Further studies about the fate and transport of Cd and other toxic metals in the sludges are highly recommended to better understand their risk to the surrounding environment, such as groundwater and agricultural soil.


Assuntos
Água Potável , Metais Pesados , Cádmio , China , Ecossistema , Monitoramento Ambiental , Chumbo , Metais Pesados/análise , Medição de Risco , Esgotos , Vietnã
3.
Materials (Basel) ; 14(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34772119

RESUMO

External damage to buried pipelines is mainly caused by corrosive components in soil solution. The reality that numerous agents are present in the corrosive environment simultaneously makes it troublesome to study. To solve that issue, this study aims to determine the influence of the combination of pH, chloride, and sulfate by using a statistical method according to the design of experiment (DOE). Response surface methodology (RSM) using the Box-Behnken design (BBD) was selected and applied to the design matrix for those three factors. The input corrosion current density was evaluated by electrochemical tests under variable conditions given in the design matrix. The output of this method is an equation that calculates the corrosion current density as a function of pH, chloride, and sulfate concentration. The level of influence of each factor on the corrosion current density was investigated and response surface plots, contour plots of each factor were created in this study.

4.
Materials (Basel) ; 14(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530585

RESUMO

Several corrosion mitigation methods are generally applied to pipelines exposed to corrosive environments. However, in the case of pre-buried pipelines, the only option for corrosion inhibition is cathodic protection (CP). To apply CP, the required current should be defined even though the pipeline is covered with various oxide layers. In this study, an electrochemical acceleration test was used to investigate the synthetic soil corrosion of a pre-buried pipeline. Potentiodynamic polarization experiments were first conducted to ascertain the corrosion current density in the environment, and galvanostatic measurements were performed to accelerate corrosion according to the operating time. In addition, corrosion current density and the properties of the rust layer were investigated via potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) tests. The variation in surface corrosion was subsequently analyzed via optical microscopy (OM) and X-ray diffraction (XRD) measurements. Finally, an empirical equation for the optimized CP current requirement, according to the pipeline service time, was derived. This equation can be applied to any corroded pipeline.

5.
Chemosphere ; 263: 127912, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297011

RESUMO

In this study, we investigated the level of contamination of agricultural soil near an old recycling lead smelter in Vietnam and proposed an effective treatment for the remediation of the soil. The analysis of soil samples using an ICP-MS method revealed that the soil in the area was heavily contaminated by heavy metals, especially lead (Pb) with concentrations in surface soil of >3000 µg g-1. High concentrations of metals, including Pb, copper (Cu) and zinc (Zn), were found in whole soil profile. The FE-EPMA and Laser-Raman spectrometer results suggested that iron minerals and carbon materials in the soil are the important hosts of the toxic metals. Subsequently, a series of washing experiment were performed on the soil using biodegradable chelators, including N, N-dicarboxymethyl glutamic acid tetrasodium salt (GLDA), ascorbic acid and citric acid. The results showed that the mixture of GLDA-ascorbic (100 mM: 100 mM) can be considered as a potential candidate for Pb and Zn removal, which removes approximately 90% of Pb and 70% of Zn. Meanwhile, a mixture of GLDA-citric would be preferred for Cu removal based on its greater extraction efficiency compared to other mixtures.


Assuntos
Metais Pesados , Poluentes do Solo , Ácido Ascórbico , Quelantes , Ácido Cítrico , Chumbo , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...